Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534331

RESUMO

High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Proteínas de Membrana , Humanos , LDL-Colesterol/metabolismo , Receptor A2A de Adenosina/metabolismo , Leucócitos Mononucleares/metabolismo , Adenosina , Fatores de Risco , Colesterol , Proteínas de Transporte , Fatores de Risco de Doenças Cardíacas , Microdomínios da Membrana/metabolismo
3.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626837

RESUMO

Although very common, the precise mechanisms that explain the symptomatology of neuroendocrine syncope (NES) remain poorly understood. This disease, which can be very incapacitating, manifests itself as a drop in blood pressure secondary to vasodilation and/or extreme slowing of heart rate. As studies continue, the involvement of the adenosinergic system is becoming increasingly evident. Adenosine, which is an ATP derivative, may be involved in a large number of cases. Adenosine acts on G protein-coupled receptors with seven transmembrane domains. A1 and A2A adenosine receptor dysfunction seem to be particularly implicated since the activation leads to severe bradycardia or vasodilation, respectively, two cardinal symptoms of NES. This mini-review aims to shed light on the links between dysfunction of the adenosinergic system and NHS. In particular, signal transduction pathways through the modulation of cAMP production and ion channels in relation to effects on the cardiovascular system are addressed. A better understanding of these mechanisms could guide the pharmacological development of new therapeutic approaches.


Assuntos
Adenosina , Síncope , Animais , Anuros , Pressão Sanguínea , Frequência Cardíaca
4.
Biomedicines ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36359350

RESUMO

Fibromuscular dysplasia (FMD) is a non-inflammatory vascular disease that is characterized by unexplained systemic hypertension occurring in young people, associated with arterial stenosis, aneurysm rupture, intracranial/renal infarction, and stroke. Although the gold standard for the diagnosis remains catheter-angiography, biological markers would be helpful due to the delay from first symptom to diagnosis. Adenosine is an ATP derivative, that may be implicated in FMD pathophysiology. We hypothesized that changes in adenosine blood level (ABL) and production of adenosine receptors may be associated with FMD. Using peripheral blood mononuclear cells, we evaluated A1, A2A, and A2B receptor production by Western blot, in 67 patients (17 men and 50 women, mean (range) age 55 (29−77) years and 40 controls, 10 men and 30 women, mean (range) age 56 (37−70)). ABL was evaluated by liquid chromatography, mass spectrometry. ABL was significantly higher in patients vs. controls, mean (range): 1.7 (0.7−3) µmol/L vs. controls 0.6 (0.4−0.8) µmol/L (+180%) p < 0.001. While A1R and A2AR production did not differ in patients and controls, we found an over-production of A2BR in patients: 1.70 (0.90−2.40; arbitrary units) vs. controls = 1.03 (0.70−1.40), mean + 65% (p < 0.001). A2BR production with a cut off of 1.3 arbitrary units, gives a good sensitivity and specificity for the diagnosis. Production measurement of A2BR on monocytes and ABL could help in the diagnosis, especially in atypical or with poor symptoms.

5.
Biomedicines ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428533

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to developing innovative therapies that limit the onset and the progression of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF. After a comprehensive approach describing adenosinergic system signaling and the mechanisms of the initiation and maintenance of AF, we address the interactions of the adenosinergic system's signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors, named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed depolarization, while activation of the A1 receptors can shorten the action potential's duration and induce the resting membrane's potential hyperpolarization, which promote pulmonary vein firing, stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the autonomous nervous system and is associated with AF risk factors. A question remains regarding adenosine release and the adenosine receptors' activation and whether this would be a cause or consequence of AF.

6.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140160

RESUMO

Climbers and aviators are exposed to severe hypoxia at high altitudes, whereas divers are exposed to hyperoxia at depth. The aim of this study was to report changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures. At high altitudes, the increased adenosine concentration contributes to brain protection against hypoxia through various mechanisms such as stimulation of glycogenolysis for ATP production, reduction in neuronal energy requirements, enhancement in 2,3-bisphosphoglycerate production, and increase in cerebral blood flow secondary to vasodilation of cerebral arteries. In the context of mountain illness, the increased level of A2AR expression leads to glial dysfunction through neuroinflammation and is involved in the pathogenesis of neurological disorders. Nonetheless, a high level of adenosine concentration can protect against high-altitude pulmonary edema via a decrease in pulmonary arterial pressure. The adenosinergic system is also involved in the acclimatization phenomenon induced by prolonged exposure to altitude hypoxia. During hyperoxic exposure, decreased extracellular adenosine and low A2A receptor expression contribute to vasoconstriction. The resulting decrease in cerebral blood flow is considered a preventive phenomenon against cerebral oxygen toxicity through the decrease in oxygen delivery to the brain. With regard to lung oxygen toxicity, hyperoxia leads to an increase in extracellular adenosine, which acts to preserve pulmonary barrier function. Changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures frequently have a benefit in decreasing the risk of adverse effects.

7.
Biomedicines ; 10(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36009396

RESUMO

The evaluation of suspected coronary artery disease (CAD) in the medical community is challenging. Patients with suspected coronary chronic syndrome (CCS) are referred by the medical community to be assessed by specialists for the performance of noninvasive tests that have high rates of false positives and false negatives. While troponins are the gold standard for evaluate myocardial injuries, there is no biomarker to assess myocardial ischemia in patient populations with negative electrocardiography or without an increase in troponin level. A2A adenosine receptors control the coronary blood flow through its vasodilating properties. It has been shown that patients with CAD have a lower A2AR expression on peripheral blood mononuclear cells, suggesting a link between A2AR production and the severity of CAD. Herein, we present a new and innovative method of inhibition ELISA for A2AR in the plasma of patients who permit the evaluation of the amount of soluble A2AR. For this analysis, the total study sample was 54, including 31 patients with CAD with stenosis > 50% and a significant fractional flow reserve (FFR < 0.8) (Group 1) and 23 patients with normal or non-obstructive coronary arteries (stenosis < 50% and nonsignificant FFR > 0.8) (Group 2). The % inhibition (which is linked to the presence of soluble receptors) with the plasma of patients with FFR < 0.8 was significantly lower than that of patients with FFR > 0.8 (median [range]: 68% [20.7−86.9] vs. 83% [67−88.4]; p < 0.001). The ROC curve indicated a good sensitivity/specificity ratio with a cut off of 72.5% and an area under the curve of 0.87. In conclusion, a rapid ELISA to assess soluble A2AR in the plasma shows promise to screen patients suspected of having CAD.

8.
Front Med (Lausanne) ; 9: 880803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646993

RESUMO

Background: Aspiration pneumonia is the most common respiratory complication following out-of-hospital cardiac arrests (OHCA). Alpha-amylase (α-amylase) in pulmonary secretions is a biomarker of interest in detecting inhalation. The main goal of this study is to evaluate the performance of bronchoalveolar levels of α-amylase in early diagnosis of aspiration pneumonia, in patients admitted to intensive care unit (ICU) after OHCA. Methods: This is a prospective single-center trial, led during 5 years (July 2015 to September 2020). We included patients admitted to ICU after OHCA. A protected specimen bronchial brushing and a mini-bronchoalveolar lavage (mini-BAL) were collected during the first 6 h after admission. Dosage of bronchial α-amylase and standard bacterial analysis were performed. Investigators confirmed pneumonia diagnosis using clinical, radiological, and microbiological criteria. Every patient underwent targeted temperature management. Results: 88 patients were included. The 34% (30 patients) developed aspiration pneumonia within 5 days following admission. The 55% (17) of pneumonias occurred during the first 48 h. The 57% of the patients received a prophylactic antibiotic treatment on their admission day. ICU mortality was 50%. Median value of bronchial α-amylase did not differ whether patients had aspiration pneumonia (15 [0-94]) or not (3 [0-61], p = 0,157). Values were significantly different concerning early-onset pneumonia (within 48 h) [19 (7-297) vs. 3 (0-82), p = 0,047]. If one or more microorganisms were detected in the initial mini-BAL, median value of α-amylase was significantly higher [25 (2-230)] than in sterile cultures (2 [0-43], p = 0,007). With an 8.5 IU/L cut-point, sensitivity and specificity of α-amylase value for predicting aspiration pneumonia during the first 2 days were respectively 74 and 62%. True positive and negative rates were respectively 44 and 86%. The area under the ROC curve was 0,654 (CI 95%; 0,524-0,785). Mechanical ventilation duration, length of ICU stay, and mortality were similar in both groups. Conclusion: In our study, dosage of bronchial α-amylase was not useful in predicting aspiration pneumonia within the first 5 days after ICU admission for OHCA. Performance in predicting early-onset pneumonia was moderate.

9.
Biomedicines ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625864

RESUMO

Adenosine is a ubiquitous nucleoside that is implicated in the occurrence of clinical manifestations of neuro-humoral syncope (NHS). NHS is characterized by a drop in blood pressure due to vasodepression together with cardio inhibition. These manifestations are often preceded by prodromes such as headaches, abdominal pain, feeling of discomfort or sweating. There is evidence that adenosine is implicated in NHS. Adenosine acts via four subtypes of receptors, named A1 (A1R), A2A (A2AR), A2B (A2BR) and A3 (A3R) receptors, with all subtypes belonging to G protein membrane receptors. The main effects of adenosine on the cardiovascular system occurs via the modulation of potassium ion channels (IK Ado, K ATP), voltage-gate calcium channels and via cAMP production inhibition (A1R and A3R) or, conversely, through the increased production of cAMP (A2A/BR) in target cells. However, it turns out that adenosine, via the activation of A1R, leads to bradycardia, sinus arrest or atrioventricular block, while the activation of A2AR leads to vasodilation; these same manifestations are found during episodes of syncope. The use of adenosine receptor antagonists, such as theophylline or caffeine, should be useful in the treatment of some forms of NHS. The aim of this review was to summarize the main data regarding the link between the adenosinergic system and NHS and the possible consequences on NHS treatment by means of adenosine receptor antagonists.

10.
Clin Endocrinol (Oxf) ; 96(1): 47-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694022

RESUMO

OBJECTIVES: Polyuria-polydipsia syndrome (PPS) is a common presentation in children but the differential diagnosis rests on burdensome water deprivation tests. The aims of this study were to determine a copeptin threshold to distinguish patients with central diabetes insipidus from those with primary polydipsia and to estimate the normal range of copeptin concentrations in children. DESIGN: Single-centre retrospective descriptive study. PATIENTS: Two hundred and seventy-eight children aged 2 months to 18 years who consulted for PPS (N = 40) or other reasons (control group, N = 238) at La Timone University Hospital in Marseille, France, between April 2015 and September 2019 and had a copeptin assay. MEASUREMENTS: Ultrasensitive copeptin assays on blood samples. RESULTS: Among the children with PPS, the mean copeptin concentrations were 1.72, 55.2 and 15.7 pmol/l in those with central diabetes insipidus (N = 21), nephrogenic diabetes insipidus (N = 3), and primary polydipsia (N = 16), respectively. Copeptin levels lower than 3.53 pmol/l were diagnostic of central diabetes insipidus with 100% sensitivity and 87.4% specificity (p < .001). The 5th-95th copeptin percentile range in the control group was 2.53-21.03 pmol/L. Copeptin levels were significantly higher in boys than in girls but there was no association with age, pubertal stage, body mass index, or the reason for consulting. CONCLUSIONS: Our results indicate copeptin assays may be valuable in the differential diagnosis of PPS in children. Larger prospective studies are required to establish their accuracy in everyday clinical practice.


Assuntos
Criança Hospitalizada , Poliúria , Criança , Diagnóstico Diferencial , Feminino , Glicopeptídeos , Humanos , Masculino , Polidipsia/diagnóstico , Poliúria/diagnóstico , Estudos Retrospectivos
11.
Clin Nutr ; 41(12): 3115-3119, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34134916

RESUMO

BACKGROUND & AIMS: Nutritional predisposition to severe coronavirus disease 2019 (COVID-19) remains unclear. Zinc deficiency could be critical since it is associated with a higher susceptibility to infections. We evaluated the prevalence of hypozincemia in the early stage of COVID-19, its association with risk factors for severe COVID-19 and its prognostic value for hospitalization for respiratory complications within 10 days. METHODS: For 152 COVID-19 patients and 88 non-COVID-19 patients admitted to COVID-19 screening centers, national early warning score for COVID-19 (NEWS) and laboratory analyses were performed to identify the risk for severe COVID-19. Multivariable logistic regression analysis assessed whether hypozincemia was an independent predictor of hospitalization for respiratory complications within 10 days (primary judgment criterion). The secondary judgment criteria were high NEWS score (≥7), comorbidities and biomarkers associated with severe COVID-19. RESULTS: Hypozincemia was more frequent in COVID-19 patients compared to non-COVID-19 patients (27.6% vs 11.4%; p = 0.003). Older patients (≥65 years) and medically assisted nursing home residents were at higher risk of hypozincemia (p < 0.01). Hypozincemia was associated with a worse NEWS score (p < 0.01) and lymphopenia (p < 0.001). Hypozincemia was independently associated with hospitalization for respiratory complications within 10 days (OR = 10.9, 95% CI = 2.3-51.6, p = 0.002). CONCLUSIONS: In the early stage of COVID-19, the prevalence of hypozincemia exceeded 20%. Hypozincemia was an independent predictor of hospitalization for respiratory complications within 10 days. This may suggest the importance of early detection and treatment of zinc deficiency in the nutritional management of COVID-19, especially in older people. Therefore, intervention and adjuvant treatment trials are strongly needed.


Assuntos
COVID-19 , Desnutrição , Humanos , Idoso , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Hospitalização , Fatores de Risco , Desnutrição/diagnóstico , Desnutrição/epidemiologia , Zinco
12.
Front Cardiovasc Med ; 8: 761164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805317

RESUMO

Objective: Although atrial fibrillation is a common cardiac arrhythmia in humans, the mechanism that leads to the onset of this condition is poorly elucidated. Adenosine is suspected to be implicated in the trigger of atrial fibrillation (AF) through the activation of its membrane receptors, mainly adenosine receptor (AR) subtypes A1R and A2R. In this study, we compared blood adenosine concentration (BAC), and A1R, A2AR, and A2BR production in right (RA) and left atrium (LA), and on peripheral blood mononuclear cells (PBMCs) in patients with underlying structural heart disease undergoing cardiac surgery with or without peri-operative AF (PeOpAF). Methods: The study group consisted of 39 patients (30 men and 9 women, mean age, range 65 [40-82] years) undergoing cardiac surgery and 20 healthy patients (8 women and 12 men; mean age, range 60 [39-72] years) as controls were included. Among patients, 15 exhibited PeOpAF. Results: Blood adenosine concentration was higher in patients with PeOpAF than others. A2AR and A2BR production was higher in PBMCs of patients compared with controls and was higher in PeOpAF patients than other patients. In LA and RA, the production of A2AR and A2BR was higher in patients with PeOpAF than in other patients. Both A2AR and A2BR production were higher in LA vs. RA. A1R production was unchanged in all situations. Finally, we observed a correlation between A1R, A2AR, and A2BR production evaluated on PBMCs and those evaluated in LA and RA. Conclusions: Perioperative AF was associated with high BAC and high A2AR and A2BR expression, especially in the LA, after cardiac surgery in patients with underlying structural heart disease. Whether these increases the favor in triggering the AF in this patient population needs further investigation.

13.
Biomedicines ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070021

RESUMO

BACKGROUND: The COVID-19 crisis has strained world health care systems. This study aimed to develop an innovative prediction score using clinical and biological parameters (PREDICT score) to anticipate the need of intensive care of COVID-19 patients already hospitalized in standard medical units. METHODS: PREDICT score was based on a training cohort and a validation cohort retrospectively recruited in 2020 in the Marseille University Hospital. Multivariate analyses were performed, including clinical, and biological parameters, comparing a baseline group composed of COVID-19 patients exclusively treated in standard medical units to COVID-19 patients that needed intensive care during their hospitalization. RESULTS: Independent variables included in the PREDICT score were: age, Body Mass Index, Respiratory Rate, oxygen saturation, C-reactive protein, neutrophil-lymphocyte ratio and lactate dehydrogenase. The PREDICT score was able to correctly identify more than 83% of patients that needed intensive care after at least 1 day of standard medical hospitalization. CONCLUSIONS: The PREDICT score is a powerful tool for anticipating the intensive care need for COVID-19 patients already hospitalized in a standard medical unit. It shows limitations for patients who immediately need intensive care, but it draws attention to patients who have an important risk of needing intensive care after at least one day of hospitalization.

14.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567540

RESUMO

The influence of hyperhomocysteinemia (HHCy) on cardiovascular disease (CVD) remains unclear. HHCy is associated with inflammation and atherosclerosis, and it is an independent risk factor for CVD, stroke and myocardial infarction. However, homocysteine (HCy)-lowering therapy does not affect the inflammatory state of CVD patients, and it has little influence on cardiovascular risk. The HCy degradation product hydrogen sulfide (H2S) is a cardioprotector. Previous research proposed a positive role of H2S in the cardiovascular system, and we discuss some recent data suggesting that HHCy worsens CVD by increasing the production of H2S, which decreases the expression of adenosine A2A receptors on the surface of immune and cardiovascular cells to cause inflammation and ischemia, respectively.


Assuntos
Doenças Cardiovasculares/etiologia , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/complicações , Receptor A2A de Adenosina/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Hiper-Homocisteinemia/metabolismo
15.
Allergy ; 76(6): 1846-1858, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484168

RESUMO

BACKGROUND: Many arguments suggest that neutrophils could play a prominent role in COVID-19. However, the role of key components of neutrophil innate immunity in severe forms of COVID-19 has deserved insufficient attention. We aimed to evaluate the involvement of neutrophil elastase, histone-DNA, and DNases in systemic and multi-organ manifestations of COVID-19. METHODS: We performed a multicenter study of markers of neutrophil innate immunity in 155 cases consecutively recruited in a screening center, local hospitals, and two regional university hospitals. The cases were evaluated according to clinical and biological markers of severity and multi-organ manifestations and compared to 35 healthy controls. RESULTS: Blood neutrophil elastase, histone-DNA, myeloperoxidase-DNA, and free dsDNA were dramatically increased, and DNase activity was decreased by 10-fold, compared with controls. Neutrophil elastase and histone-DNA were associated with intensive care admission, body temperature, lung damage, and markers of cardiovascular outcomes, renal failure, and increased interleukin-6 (IL-6), IL-8, and CXCR2. Neutrophil elastase was an independent predictor of the computed tomography score of COVID-19 lung damage and the number of affected organs, in multivariate analyses. The increased blood concentrations of NE and neutrophil extracellular traps were related to exacerbation of neutrophil stimulation through IL-8 and CXCR2 increased concentrations and increased serum DAMPs, and to impaired degradation of NETs as a consequence of the dramatic decrease in blood DNase activity. CONCLUSION: Our results point out the key role of neutrophil innate immunity exacerbation in COVID-19. Neutrophil elastase and DNase could be potential biomarkers and therapeutic targets of severe systemic manifestations of COVID-19.


Assuntos
COVID-19 , Armadilhas Extracelulares , Histonas , Humanos , Imunidade Inata , Neutrófilos , SARS-CoV-2
17.
J Cell Mol Med ; 24(16): 8942-8949, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599677

RESUMO

Hyperhomocysteinemia is associated with coronary artery disease (CAD). The mechanistic aspects of this relationship are unclear. In CAD patients, homocysteine (HCy) concentration correlates with plasma level of adenosine that controls the coronary circulation via the activation of adenosine A2A receptors (A2A R). We addressed in CAD patients the relationship between HCy and A2A R production, and in cellulo the effect of HCy on A2A R function. 46 patients with CAD and 20 control healthy subjects were included. We evaluated A2A R production by peripheral blood mononuclear cells using Western blotting. We studied in cellulo (CEM human T cells) the effect of HCy on A2A R production as well as on basal and stimulated cAMP production following A2A R activation by an agonist-like monoclonal antibody. HCy concentration was higher in CAD patients vs controls (median, range: 16.6 [7-45] vs 8 [5-12] µM, P < 0.001). A2A R production was lower in patients vs controls (1.1[0.62-1.6] vs 1.53[0.7-1.9] arbitrary units, P < 0.001). We observed a negative correlation between HCy concentration and A2A R production (r = -0.43; P < 0.0001), with decreased A2A R production above 25 µM HCy. In cellulo, HCy inhibited A2A R production, as well as basal and stimulated cAMP production. In conclusion, HCy is negatively associated with A2A R production in CAD patients, as well as with A2A R and cAMP production in cellulo. The decrease in A2A R production and function, which is known to hamper coronary blood flow and promote inflammation, may support CAD pathogenesis.


Assuntos
Doença da Artéria Coronariana/metabolismo , Homocisteína/metabolismo , Leucócitos Mononucleares/metabolismo , Receptor A2A de Adenosina/metabolismo , Idoso , Células Cultivadas , Feminino , Humanos , Hiper-Homocisteinemia/metabolismo , Masculino
19.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30201695

RESUMO

Immersion pulmonary edema (IPE) is a serious complication of water immersion during scuba diving. Myocardial ischemia can occur during IPE that worsens outcome. Because myocardial injury impacts the therapeutic management, we aim to evaluate the profile of cardiac markers (creatine phosphokinase (CPK), brain natriuretic peptide (BNP), highly sensitive troponin T (TnT-hs) and ultrasensitive troponin I (TnI-us) of divers with IPE. Twelve male scuba divers admitted for suspected IPE were included. The collection of blood samples was performed at hospital entrance (T0) and 6 h later (T0 + 6 h). Diagnosis was confirmed by echocardiography or computed-tomography scan. Mean ± S.D. BNP (pg/ml) was 348 ± 324 at T0 and 223 ± 177 at T0 + 6 h (P<0.01), while mean CPK (international units (IUs)), and mean TnT-hs (pg/ml) increased in the same times 238 ± 200 compared with 545 ± 39, (P=0.008) and 128 ± 42 compared with 269 ± 210, (P=0.01), respectively; no significant change was observed concerning TnI-us (pg/ml): 110 ± 34 compared with 330 ± 77, P=0.12. At T0 + 6 h, three patients had high TnI-us, while six patients had high TnT-hs. Mean CPK was correlated with TnT-hs but not with TnI-us. Coronary angiographies were normal. The increase in TnT during IPE may be secondary to the release of troponin from non-cardiac origin. The measurement of TnI in place of TnT permits in some cases to avoid additional examinations, especially unnecessary invasive investigations.


Assuntos
Isquemia Miocárdica/sangue , Edema Pulmonar/sangue , Troponina I/sangue , Troponina T/sangue , Adulto , Biomarcadores/sangue , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiopatologia , Angiografia Coronária , Creatina Quinase/sangue , Mergulho/efeitos adversos , Humanos , Imersão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/fisiopatologia , Peptídeo Natriurético Encefálico/sangue , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia
20.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R509-R520, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741931

RESUMO

Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the l-arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LPD, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-wk-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, endothelial NO synthase (eNOS) protein content, arginase activity, and superoxide anion production. SBP was not different at 5 wk but significantly increased in 8-wk-old offspring of maternal LPD (LP) versus CTRL offspring. In 5-wk-old LP versus CTRL males, endothelium-dependent vasorelaxation was significantly impaired but restored by preincubation with l-arginine or the arginase inhibitor S-(2-boronoethyl)-l-cysteine; NO production was significantly reduced but restored by l-arginine pretreatment; total eNOS protein, dimer-to-monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced but normalized by pretreatment with the NO synthase inhibitor Nω-nitro-l-arginine. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase upregulation and eNOS uncoupling, which precedes the development of HTN.


Assuntos
Aorta Torácica/enzimologia , Arginase/metabolismo , Endotélio Vascular/enzimologia , Retardo do Crescimento Fetal/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aorta Torácica/fisiopatologia , Arginina/metabolismo , Dieta com Restrição de Proteínas , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Hipertensão/enzimologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Óxido Nítrico/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...